benefits of hyaluronic acid – Stanford Chemicals https://www.stanfordchem.com Global Supplier of Hyaluronic Acid & Chondroitin Sulfate Tue, 31 Dec 2024 09:23:13 +0000 en-US hourly 1 https://wordpress.org/?v=4.9.18 https://www.stanfordchem.com/wp-content/uploads/2018/08/cropped-STANFORD-CHEMICALS-LOGO-1-32x32.jpg benefits of hyaluronic acid – Stanford Chemicals https://www.stanfordchem.com 32 32 Sodium Hyaluronate: Uses, Molecular Weight, Production and Derivatives https://www.stanfordchem.com/sodium-hyaluronate-uses-molecular-weight-production-and-derivatives.html https://www.stanfordchem.com/sodium-hyaluronate-uses-molecular-weight-production-and-derivatives.html#respond Tue, 03 Dec 2024 07:37:57 +0000 https://www.stanfordchem.com/?p=10044 When sodium hyaluronate is mentioned, many people might first think of the “hydrating ingredient” in skincare products, but its story goes far beyond that. As a powerful biological molecule, it plays a significant role in beauty, medicine, and health care. Multiple Functions of Sodium Hyaluronate From skincare to medicine, joint care to genetic engineering, sodium […]

The post Sodium Hyaluronate: Uses, Molecular Weight, Production and Derivatives appeared first on Stanford Chemicals.

]]>
When sodium hyaluronate is mentioned, many people might first think of the “hydrating ingredient” in skincare products, but its story goes far beyond that. As a powerful biological molecule, it plays a significant role in beauty, medicine, and health care.

Multiple Functions of Sodium Hyaluronate

From skincare to medicine, joint care to genetic engineering, sodium hyaluronate has become an indispensable part of modern technology and daily life.

Multiple Functions of Sodium Hyaluronate

Fig 1. Wide range of uses for hyaluronic acid

–A Multifunctional Skincare Ingredient

Sodium hyaluronate is a star in skincare products. It boasts excellent moisturizing properties, repairs the skin barrier, and fights aging. It quickly increases the skin’s water content, restoring its radiance. Whether it’s a luxury serum or an affordable mask, you’re likely to find its presence.

Read more: Hyaluronic Acid vs Glycerin: Which is More Hydrating

–A Star Ingredient in the Beauty Industry

It is not only a key ingredient in skincare but also a celebrity in the beauty field. From injectable fillers and skin tightening to restoring elasticity, sodium hyaluronate plays a crucial role.

— A Key Component of Artificial Tears

For modern individuals who spend extended periods staring at screens, dry eye syndrome has become a common issue. Sodium hyaluronate, with its excellent lubricating and moisturizing properties, is widely used in artificial tears, effectively alleviating eye discomfort and fatigue.

Read more: From Surgery to Daily Care: The Versatile Role of Sodium Hyaluronate in Eye Health

— A Miracle Ingredient for Joint Pain Relief

Joint problems are often caused by the loss of hyaluronic acid in synovial fluid. Sodium hyaluronate is used in joint injection solutions to provide lubrication, reduce friction and pain, and restore mobility for osteoarthritis patients.

— Significant Applications in Medicine

In surgeries, sodium hyaluronate serves as a tissue filler or drug carrier, accelerating tissue healing and reducing inflammation. Additionally, it is used in wound repair and oral care, demonstrating extraordinary medical value.

How Molecular Weight Affects Sodium Hyaluronate Uses

The molecular weight of sodium hyaluronate determines its characteristics in absorption, penetration, lubrication, and repair, making it a crucial reference for its specific applications.

High vs Low Molecular Weight hyaluronic acid

Fig 2. HA with different molecular weights has different permeability

–High Molecular Weight HA: Preferred for Barrier and Lubrication

High molecular weight (>1,800 kDa) sodium hyaluronate tends to remain on the surface, forming a viscoelastic film.

  • Joint Treatment: In osteoarthritis therapy, it enhances the viscoelasticity of joint fluid, reduces friction, and alleviates pain.
  • Ophthalmology: Its lubricating properties protect the cornea and alleviate discomfort in dry eyes, particularly for contact lens wearers.
  • Food Industry: Used as a food additive to improve oral and esophageal lubrication, aiding those with swallowing difficulties.

— Medium Molecular Weight HA: Balanced Properties for Broad Applications

Medium molecular weight (200–1,800 kDa) sodium hyaluronate offers a balance of surface action and penetration.

  • Medical Dressings: Exhibits excellent tissue repair properties for burns and wounds, covering surfaces while promoting regeneration.
  • Drug Delivery: Used as a matrix material for drug delivery systems, enabling slow drug release and improved bioavailability.

— Low Molecular Weight HA: Core for Penetration and Repair

Low molecular weight (5-200 kDa) sodium hyaluronate has excellent penetration properties, reaching deep into tissues or cells.

Aesthetic Treatments: Used for deep tissue filling in injections, such as correcting depressions or scar repair.

  • Drug Development: Its penetration performance makes it an effective drug carrier for cancer and immune regulation treatments.
  • Anti-inflammatory and Immune Regulation: It modulates inflammatory responses, aiding in pathological inflammation suppression in immunological research and therapies.

— Ultra-Low Molecular Weight HA: Exploring Frontier Functions

Ultra-low molecular weight (<5 kDa) sodium hyaluronate has drawn attention in modern medicine and biotechnology.

  • Gene Therapy: Serves as a new type of gene delivery vector, efficiently transporting gene fragments into nuclei for gene editing and cancer treatment.
  • Anti-Aging Research: Directly activates repair mechanisms at the cellular level, potentially reversing aging processes.

Table 1. Comparison of high, medium, low, and ultra-low molecular weight hyaluronic acid: HA with different molecular weights has different water solubility, viscoelasticity, and uses.

 How Molecular Weight Affects Sodium Hyaluronate Uses

Read more: Comparative Analysis of Hyaluronic Acid with Different Molecular Weights

Production Method: Microbial Fermentation

The microbial fermentation method employs microorganisms such as streptococci to produce sodium hyaluronate through fermentation. This process is more eco-friendly and safer than traditional animal tissue extraction, avoiding allergic risks from animal sources. It also allows precise control of molecular weight and purity, meeting diverse industry needs.

Read more: How is Hyaluronic Acid Powder Made

Derivatives of Hyaluronic Acid

To expand the applications of sodium hyaluronate, scientists have developed various derivatives through chemical modifications. For example, cross-linked hyaluronic acid is a derivative where molecular chains are connected with cross-linking agents to form a more stable 3D network structure.

These modifications significantly enhance its resistance to degradation while maintaining elasticity and water retention. Cross-linked hyaluronic acid is primarily used in long-lasting cosmetic fillers for wrinkle removal and shaping. It is also used in joint cavity injections to increase lubrication and alleviate pain.

 

Stanford Chemical Company (SCC) is a pioneer in the development of hyaluronic acid. Products include food-grademedical-gradecosmetic-gradeinjectable-grade hyaluronic acid, and hyaluronic acid derivatives (Sodium Acetylated Hyaluronate and Cross-linked Hyaluronic Acid Gel). We can also provide customers with customized molecular-weight sodium hyaluronate powder. For more information or specific applications, please visit our homepage.

The post Sodium Hyaluronate: Uses, Molecular Weight, Production and Derivatives appeared first on Stanford Chemicals.

]]>
https://www.stanfordchem.com/sodium-hyaluronate-uses-molecular-weight-production-and-derivatives.html/feed 0
How to Choose the Right Injectable-Grade Hyaluronic Acid https://www.stanfordchem.com/how-to-choose-the-right-injectable-grade-hyaluronic-acid.html https://www.stanfordchem.com/how-to-choose-the-right-injectable-grade-hyaluronic-acid.html#respond Tue, 26 Nov 2024 07:43:03 +0000 https://www.stanfordchem.com/?p=10040 Hyaluronic acid is a naturally occurring ingredient in the human body, known for its excellent moisturizing, lubrication, and biocompatibility. These merits have led to a wide variety of applications in medicine and cosmetics. According to its purpose, HA can be divided into cosmetic-grade, food-grade, medical-grade, and injectable-grade. Of them, injectable-grade HA is extensively used in […]

The post How to Choose the Right Injectable-Grade Hyaluronic Acid appeared first on Stanford Chemicals.

]]>
Hyaluronic acid is a naturally occurring ingredient in the human body, known for its excellent moisturizing, lubrication, and biocompatibility. These merits have led to a wide variety of applications in medicine and cosmetics.

According to its purpose, HA can be divided into cosmetic-grade, food-grade, medical-grade, and injectable-grade. Of them, injectable-grade HA is extensively used in cosmetic surgery, joint therapy, and medical lubrication. How to choose suitable injectable-grade HA according to the particular requirement? Let’s discuss that.

What is Injectable-Grade Hyaluronic Acid

Injection-grade hyaluronic acid represents high-quality HA developed especially for medical and cosmetic injection purposes. It undergoes extensive purification processes to remove impurities and possible allergens, ensuring the following features:

  • High Purity: It is of medical-grade quality, thus safe to be injected.
  • High Biocompatibility: Very similar in structure to human tissues for maximum safety.
  • Long-Lasting Stability: It degrades much more slowly, prolonging its effect.

This kind of HA is used for filling facial hollows, and lubricating joints, and can even enhance the smooth operation of surgical tools.

Suitable Molecular Weights for Different Scenarios

Key Considerations When Choosing Injectable-Grade Hyaluronic Acid

The key to selecting the right injectable-grade HA lies in understanding your application needs. Of course, we have summarized some core indicators here to help you understand your needs.

  1. Molecular Weight

Molecular weight defines the viscoelasticity, absorption rate, and degradation time of HA. Generally speaking, high molecular weight works better for lubrication and support, while low to medium molecular weight serves for penetration and drug delivery.

  1. Purity and Sterility

HA injections should have ultra-high purity, be free from impurities, and be manufactured under sterile conditions to minimize infection risk.

  1. Biocompatibility

Good quality HA should be strictly tested for compatibility with human tissues to minimize inflammation or adverse reactions upon its use.

  1. Certification and Credentials

Only choose products certified by international authorities such as FDA or CE to ensure good quality and safety.

Products meeting this criterion will perform well in the intended applications.

 

Read more: How is Hyaluronic Acid Powder Made

Suitable Molecular Weights for Different Scenarios

–Cosmetic Procedures

HA is commonly used in cosmetic procedures to fill facial hollows, reduce fine lines, and improve skin elasticity.

Recommended Molecular Weight Medium to high (1,300 kDa–1,800 kDa)
Features Strong viscoelasticity and good support, capable of sculpting natural facial contours with prolonged effects.
Typical Applications Nose augmentation, facial fillers, and lip shaping

Studies have shown that HA with molecular weights in the range of 1,300 kDa–1,800 kDa provides optimal viscoelasticity and volumizing effects, which are crucial for facial contouring and dermal filler applications.[i]

The medium to high molecular weight provides the structural integrity needed to sculpt facial contours while maintaining biocompatibility and longer-lasting effects due to slower degradation rates.

–Joint Injections

For patients with osteoarthritis, HA injections are essential for pain relief and improved joint mobility.

Recommended Molecular Weight High (>1,800 kDa)
Features High viscosity and excellent lubrication to absorb shock during joint movement, reducing inflammation and pain
Typical Applications Injections into knee and hip joints

The high molecular weight ensures a thick, viscous solution capable of providing cushioning for joints, mimicking natural synovial fluid.

–Medical Lubricants

HA is often used as a lubricant during surgical procedures to minimize friction between instruments and tissues, improving procedural efficiency.

Recommended Molecular Weight Medium (800 kDa–1,300 kDa)
Features Balanced flowability and lubrication, reducing friction while maintaining high safety standards
Typical Applications Coating for catheters and aiding endoscopic operations

Medium molecular weight (800 kDa–1,300 kDa) HA is well-documented for its flowability and lubricating properties, essential for reducing friction during surgical procedures.[ii]

Medium molecular weight strikes a balance between being easy to handle and highly effective as a lubricant, making it suitable for surgical applications requiring precise, smooth interactions.

Conclusion

It is easy to select the proper injectable-grade hyaluronic acid once the application scenario is clear. Cosmetic procedures require medium and high molecular weight products for excellent support and longevity of results. High molecular weight HA has better application in joint injections, as it maintains lubrication and cushioning.

Meanwhile, in medical lubricant applications, medium molecular weight HA remains flowable with safety features. Regardless of the application, always prioritize purity, sterility, and certifications to ensure safety and effectiveness.

Pure Injection Hyaluronic Acid (HA) Powder from Stanford Chemicals Company

Injection-grade hyaluronic acid from Stanford Chemicals Company (SCC) is GMP, CEP, and DMF certificated and the factory passed an on-site inspection by the US FDA. It is all fermented products, non-animal sources, non-GMO, and non-BSE/TSE risk.

Main Products:

Item No. Specification
HA-EP1.8-SC M.W: 800K-1,300K Da,

I.V.: 1.44-2.12 m3/kg

HA-EP2.4-SC M.W: 1,300K-1,800K Da;

I.V: 2.12-2.72 m3/kg

HA-EP3.0-SC M.W:1,800K-2,500K Da;

I.V.: 2.72-3.53 m3/kg

HA-EPC-SC Customized Molecular weight

 

References:

The 5 Common Uses of Injectable Hyaluronic Acid

High vs. Low Hyaluronic Acid: How Molecular Weight Affects the Efficacy

[i] Kablik J, Monheit GD, Yu L, Chang G, Gershkovich J. Comparative physical properties of hyaluronic acid dermal fillers. Dermatol Surg. 2009 Feb;35 Suppl 1:302-12. doi: 10.1111/j.1524-4725.2008.01046.x. PMID: 19207319.

[ii] Cowman MK, Schmidt TA, Raghavan P, Stecco A. Viscoelastic Properties of Hyaluronan in Physiological Conditions. F1000Res. 2015 Aug 25;4:622. doi: 10.12688/f1000research.6885.1. PMID: 26594344; PMCID: PMC4648226.

The post How to Choose the Right Injectable-Grade Hyaluronic Acid appeared first on Stanford Chemicals.

]]>
https://www.stanfordchem.com/how-to-choose-the-right-injectable-grade-hyaluronic-acid.html/feed 0